
National Aeronautics and Space Administration 

www.nasa.gov 1 

VIPR Gas Path Diagnostic Results 
 

 

 

 

 

 

 

Donald L. Simon 

John D. Lekki 

Gary W. Hunter 

NASA Glenn Research Center 

 

Aidan Rinehart 

Vantage Partners, LLC. 

4th NASA Glenn Propulsion Control and Diagnostics Research Workshop 

December 11-12, 2013 

Cleveland, OH 



National Aeronautics and Space Administration 

www.nasa.gov 

Outline 

• Model-Based Gas Path Diagnostic Architecture 

Overview 

• Application Example: VIPR Engine Test Data 

– VIPR Engine Health Management (EHM) Test Architecture 

– Model Enhancements 

– Diagnostic results 

• Summary 
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Model-Based Gas Path Diagnostic Architecture 
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• Designed for processing real-time continuous (streaming) engine 

measurement data to provide: 

o Estimation and trending of deterioration-induced engine performance changes 

o Detection and isolation of gas path system faults 
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Real-Time Adaptive Performance Model (RTAPM) 
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• Self-tuning piecewise linear Kalman filter design 

• Applies NASA-developed optimal tuner selection methodology 

‒ Applicable for underdetermined estimation problems 

‒ Minimizes mean squared estimation error in parameters of interest  

• Provides real-time estimates of unmeasured engine performance parameters 

‒ Applicable for performance trend monitoring and model-based control applications 
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Performance Baseline Model (PBM) 
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• Piecewise linear state space model design, run “pseudo open-loop” with inputs of: 

‒ Actuator commands, u.  

‒ Sensed fan speed, N1, which is used for setting model fan speed state variable to 

improve model-to-engine tracking capability. 

‒ Periodic model tuning parameter updates from RTAPM to account for gradual 

performance degradation effects.  

• Provides a baseline of recent past engine performance 
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Fault Diagnostics 
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• Monitors residuals between sensed engine outputs and PBM estimated outputs. 

• Fault detection is performed by calculating and monitoring a weighted sum of 

squared residuals (WSSR) signal. 

• Upon fault detection, fault classification is performed by identifying the candidate 

fault signature that most closely matches the observed residuals in a weighted 

least squares sense.  
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VIPR Engine Test 
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• VIPR is a series of engine tests ongoing at 

NASA Dryden / Edwards Air Force Base 

 

• Test vehicle:  
– Boeing C-17 Globemaster III 

– Equipped with Pratt & Whitney F117 high-

bypass turbofan engines 

 

• VIPR 1 EHM ground tests include: 
– A series of nominal and faulted engine test 

cases  

– Data collected over a range of engine power 

settings including quasi-steady-state and 

transient operating conditions 

Pratt & Whitney F117 Turbofan Engine 

Boeing C-17 Globemaster III 
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VIPR Architecture for EHM Testing 
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Model-Based Gas Path Diagnostic 

Architecture Enhancements 
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• Model-based gas path diagnostic architecture designed based 

on NASA C-MAPSS40k model.  

• Model updates were necessary due to notable mismatch 

between F117 engine and C-MAPSS40k model: 
o Re-trimmed piecewise linear model to match F117 engine 

performance 

o Updated model thermocouple dynamics 

N1corrected

y
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Diagnostic Results (Baseline Run #1) 
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Diagnostic Results (Baseline Run #2) 
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Station 2.5 Bleed Valve Fault Case 

12 

G
a

s
 P

a
th

 P
a

ra
m

e
te

r

 

 

W
S

S
R

 

 

0 500 1000 1500 2000 2500 3000

0: No fault
1: FAN     
2: LPC     
3: HPC     
4: HPT     
5: LPT     
6: B25     
7: VSV     
8: B14     

D
ia

g
n

o
s
e

d
 F

a
u

lt
 I
D

Time (sec)

Sensed Measurement

Performance Baseline Model Predicted Measurement

WSSR

Anomaly Detection Threshold
Anomaly detection

threshold exceeded

Station 2.5 bleed fault
type correctly diagnosed



National Aeronautics and Space Administration 

www.nasa.gov 

14th Stage Bleed Valve Fault Case 
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Summary 
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• Model-Based Gas Path Diagnostic Architecture 

successfully applied for processing streaming 

(continuous) aircraft engine measurement data 

• Model enhancements to address engine-model 

mismatch were necessary 
‒ Re-trimming of steady-state trim points 

‒ Updating thermocouple dynamics 

• Future work to focus on 
‒ Improving model-to-engine matching during transients 

‒ Evaluating architecture’s ability to estimate and trend engine 

performance deterioration 



National Aeronautics and Space Administration 

www.nasa.gov 

References 

15 

• Optimal Tuner Selection 
– Simon, D.L., Garg, S., (2010), “Optimal Tuner Selection for Kalman Filter-Based Aircraft 

Engine Performance Estimation,” Journal of Engineering for Gas Turbines and Power, 

Vol. 132 / 0231601-1. 

– Simon, D. L., Armstrong, J. B., Garg, S., (2011), “Application of an Optimal Tuner 

Selection Approach for On-Board Self-Tuning Engine Models,” ASME-GT2011-46408, 

2011 ASME Turbo Expo, Vancouver, BC, Canada, June 6-10. 

 

• Piecewise Linear Model Implementation 
– Armstrong, J.B., Simon, D.L., (2012), “Constructing an Efficient Self-Tuning Aircraft 

Engine Model for Control and Health Management Applications,” Annual Conference of 

the Prognostics and Health Management Society, Minneapolis, MN, Sep. 23-27.  

 

• Model-Based Diagnostic Architecture 
– Simon, D. L., (2010), “An Integrated Architecture for Onboard Aircraft Engine 

Performance Trend Monitoring and Gas Path Fault Diagnostics,” Proceedings of The 

2010 JANNAF Joint Subcomittee Meeting, Colorado Springs, CO, May 3-7. 

– Armstrong, J.B., Simon, D.L., (2011), “Implementation of an Integrated On-Board Aircraft 

Engine Diagnostic Architecture,” AIAA-2011-5859, 47th AIAA Joint Propulsion 

Conference & Exhibit, San Diego, CA, July 31-August 3. 

– Simon, D.L., (2012), “An Integrated Approach for Aircraft Engine Performance Estimation 

and Fault Diagnostics,” ASME-GT2012-69905, 2012 ASME Turbo Expo, Copenhagen, 

Denmark, June 11-15. 



National Aeronautics and Space Administration 

www.nasa.gov 

Backup Slides 

16 



National Aeronautics and Space Administration 

www.nasa.gov 

Piecewise Linear Model (PWLM) Generation 

17 

1) Nonlinear Engine Model 
• Physics-based aero-

thermodynamic model 

• Full-envelope transient 

simulation capabilities 
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2) Linear Point Model Generation 
• Linear state space model design 

• Approximates nonlinear model 

dynamics near design point 

• Generated at multiple design points 

spanning engine operating envelope 

  Linearization 

3) Piecewise Linear Model 
• Comprising multiple linear point models  

• Interpolation applied to enable transition 

between point models  

• Approximates nonlinear model dynamics 

over entire operating envelope. 

Combined & scheduled 

for Interpolation 


